A Big Valuation Ring

Here is an example of a valuation ring of infinite Krull dimension. We shall use it to construct a quasi-affine scheme which has no closed point.

Recall that a monoid is a category with only one object, or equivalently, a set M together with an associative binary operation with a two-sided identity element. Suppose that M is commutative and cancellative, so that $a b=a^{\prime} b$ implies that $a=a^{\prime}$. Then M can be embedded in an abelian group G, and it is clear that there is a smallest such group, unique up to unique isomorphism. We denote this by $M^{g p}$. If $x, y \in M^{g p}$, we write $x \leq y$ if $y=x z$ for some $z \in M$. This defines a partial preorder on M; it is a partial ordering if and only if M has no units. Assume this is the case. We say that M is valuative if the order it induces on $M^{g p}$ is a total order, equivalently, if for every $x \in M^{g p}$, either x or $-x$ belongs to M. For example, the monoid of natural numbers under addition is valuative.

An ideal of a monoid M is a subset K such that $a k \in K$ if $a \in M$ and $k \in K$. An ideal is prime if $a b \in K$ implies a or $b \in K$. Let M^{*} be the set of units of M and let $M^{+}:=M \backslash M^{*}$. This is maximal ideal of M and it contains every proper ideal.

Lemma 1 Let M be a valuative monoid, let k be a field, and let $k[M]$ be the monoid algebra of M. (This is the free k-vector space with basis M and with the evident structure of a k-algebra.) Then the subset $k\left[M^{+}\right]$of $k[M]$ spanned by M^{+}is a maximal ideal P of $k[M]$, and the localization $k[M]_{P}$ is a valuation ring. The ideals of $k[M]_{P}$ are in natural bijection with the ideals of M.

Example 2 (thanks to G. Bergman) Let G be the abelian group of polynomials with integer coefficients (under addition). Let M be the submonoid consisting of those polynomials p such that $p(t) \geq 0$ for all $t \in[0, \epsilon)$ for some $\epsilon>0$. If $p(t)=a_{0}+a_{1} t+\cdots$, then $p(t) \in M$ if $p=0$ or if the first nonzero a_{i} (with smallest i) is positive. The corresponding order of G is the lexicographical ordering, which is a total ordering. Thus M is a valuative monoid. For each nonnegative integer n, The set K_{n} of p with $a_{i}>0$ for some $i \leq n$ is a prime ideal of M, and we have

$$
K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \cdots K_{\infty}
$$

where $K_{\infty}=\cup_{n} K_{n}$ is the maximal ideal of Q. Now let V be the associated valuation ring and S its spectrum. Then in V we have a point s_{n} corresponding to K_{n} for $n=0,1, \ldots, \infty$, with s_{k} a specialization of s_{j} if and only if $k \geq j$. Let X be the open subscheme of S obtained by removing the closed point s_{∞}. Then X has no closed point.

